box2d manual

. Box7D Version 2,00 [=Te5}

ferations [0 | 2
Hertz |60.0 el
¥ Pasition Comrection

¥ Warm Starting

¥ Time of impact

Draw

¥ Shapes

7 Joints

™ Core Shapes

™ AABBs

[~ OBBs

[Pairs

™ Contact Points
[~ Contact Normals
I~ Contact Forces
™ Friction Forces
I~ Center of Masses.
[~ Statistics

Pause
Single Step
Quit

File Name: box2d manual.pdf
Size: 2796 KB

Type: PDF, ePub, eBook
Category: Book

Uploaded: 13 May 2019, 20:19 PM
Rating: 4.6/5 from 640 votes.

Status: AVAILABLE

Last checked: 4 Minutes ago!

In order to read or download box2d manual ebook, you
need to create a FREE account.

eBook includes PDF, ePub and Kindle version

Register a free 1 month Trial Account.
Download as many books as you like (Personal use)
Cancel the membership at any time if not satisfied.

Join Over 80000 Happy Readers

Book Descriptions:

We have made it easy for you to find a PDF Ebooks without any digging. And by having access to our
ebooks online or by storing it on your computer, you have convenient answers with box2d manual .
To get started finding box2d manual , you are right to find our website which has a comprehensive

collection of manuals listed.

Our library is the biggest of these that have literally hundreds of thousands of different products

represented.

Home | Contact | DMCA

http://filesoftclub.club/fc/box2d manual
http://filesoftclub.club/fc/box2d manual
http://filesoftclub.club/fc/box2d manual
http://filesoftclub.club/fc/box2d manual
http://filesoftclub.club/fc/box2d manual
http://filesoftclub.club/fc/box2d manual
http://filesoftclub.club/fc/box2d manual
http://filesoftclub.club/fc/box2d manual

Book Descriptions:

box2d manual

Programmers can use it in their games to make objects move in realistic ways and make the game
world more interactive. From the game engines point of view, a physics engine is just a system for
procedural animation. Most of the types defined in the engine begin with the b2 prefix. Hopefully
this is sufficient to avoid name clashing with your game engine. If not, please first consult Google
search and Wikipedia. You can get these tutorials from the download section of box2d.org. You
should be comfortable with compiling, linking, and debugging. However, not every aspect is
covered. Please look at the testbed included with Box2D to learn more. The latest version of Box2D
may be out of sync with this manual. A testbed example that reproduces the problem is ideal. You
can read about the testbed later in this document. We briefly define these objects here and more
details are given later in this document. They are hard like a diamond. In the following discussion we
use body interchangeably with rigid body. A fixture puts a shape into the collision system
broadphase so that it can collide with other shapes. A 2D body has 3 degrees of freedom two
translation coordinates and one rotation coordinate. If we take a body and pin it to the wall like a
pendulum we have constrained the body to the wall. At this point the body can only rotate about the
pin, so the constraint has removed 2 degrees of freedom. You do not create contact constraints; they
are created automatically by Box2D. Box2D supports several joint types revolute, prismatic,
distance, and more. Some joints may have limits and motors. For example, the human elbow only
allows a certain range of angles. For example, you can use a motor to drive the rotation of an elbow.
Box2D supports the creation of multiple worlds, but this is usually not necessary or desirable. The
Box2D solver is a high performance iterative solver that operates in order N time, where N is the
number of constraints.http://www.aeroklub-jihlava.cz/userfiles/corvette-1999-manual.xml

¢ box2d manual, box2d manual, box2d manual pdf, box2d manual free, box2d manuals,
box2d manual downloads, box2d manual online, box2d manual instructions, box2d
manual 2017, box2d manual software, box2d manual.

Without intervention this can lead to tunneling. First, the collision algorithms can interpolate the
motion of two bodies to find the first time of impact TOI. Second, there is a substepping solver that
moves bodies to their first time of impact and then resolves the collision. The Common module has
code for allocation, math, and settings. Finally the Dynamics module provides the simulation world,
bodies, fixtures, and joints. These tolerances have been tuned to work well with
meterskilogramsecond MKS units. In particular, Box2D has been tuned to work well with moving
shapes between 0.1 and 10 meters. So this means objects between soup cans and buses in size
should work well. Static shapes may be up to 50 meters long without trouble. Unfortunately this will
lead to a poor simulation and possibly weird behavior. An object of length 200 pixels would be seen
by Box2D as the size of a 45 story building. Keep the size of moving objects roughly between 0.1 and
10 meters. Youll need to use some scaling system when you render your environment and actors.
The Box2D testbed does this by using an OpenGL viewport transform.The billboard may move in a
unit system of meters, but you can convert that to pixel coordinates with a simple scaling factor. You
can then use those pixel coordinates to place your sprites, etc. You can also account for flipped
coordinate axes. If your world units become larger than 2 kilometers or so, then the lost precision
can affect stability. Use b2WorldShiftOrigin to support larger worlds. I recommend to use grid lines
along with some hysteresis for triggering calls to ShiftOrigin. This call should be made infrequently
because it is has CPU cost. You may need to store a physics offset when translating between game
units and Box2D units. The body rotation is stored in radians and may grow unbounded. Consider

http://www.aeroklub-jihlava.cz/userfiles/corvette-1999-manual.xml

normalizing the angle of your bodies if the magnitude of the angle becomes too large use
b2BodySetAngle.http://skibetjagtforening.damgruppen.dk/userfiles/corvec-britony-ii-t-manual.xml

So when you create a b2Body or a b2]oint, you need to call the factory functions on b2World. You
should never try to allocate these types in another manner. These definitions contain all the
information needed to build the body or joint. By using this approach we can prevent construction
errors, keep the number of function parameters small, provide sensible defaults, and reduce the
number of accessors. So you can create definitions on the stack and keep them in temporary
resources. These are created via b2WorldCreateBody. Programmers can use it in t heir games to
make object s move in realistic ways and make the game wor Id more interac tive. From th e game
engines point of view, a p hysics engine is just a system for procedural animation. Most of the types
def ined in th e engine begin with the b2 prefix. Hopefully t his is sufficient t o0 avoid name c lashing
with your game engin e. 1.2 Prere quisites In this manual I I assume you are familiar with basic
physics con cepts, suc h as mass, force, torque, and impulses. If not, please first consult Google
searc h and Wikipedia. Box2D was created as part of a physics tut orial at the Game Developer
Conference. You should be comfo rtable with compiling, li nkin g, and debugging. There are many
resources for this o n the net. 1.3 About t his Manual This manual c overs the majority of t he Box2D
API. However, not every asp ect is ¢ overed. You are encouraged to look at the testbed inc luded
with Box2D t o learn more. Also, the Box2 D code base has comments formatted for Doxygen, so it is
easy to create a hyperlinked API doc ument. This manual is on ly updated with new releases. T he
version in sou rce co n trol is likely t o be out of date. 1.4 Fe edback and Reportin g Bugs If you have
a question o r feedback about Box2D, please leave a comment in the forum. This is also a great place
for co mmunity discussion. A testbed example that reproduc es the pro blem is ideal.

You can read about t he test bed later in t his document. 1.5 Core Concepts Box2D works with
several fundamental c oncept s and objects. We briefly define these o bjects here and more details
are gi ven later in t his document.They are hard like a diamond. In the following discussion we use
body interchangeably with rigid body.A fixture put s a shape into the collisi on syst em broadphase
so that it ¢ an collide with other shapes.A 2D body has 3 degrees of freedom two t ranslation co
ordinates and one rotat ion coordinate. If we t ake a bod y and pin it to the wall li ke a pendulum we
h ave const rained the b ody to the wall. At t his point t he body can only rotat e about th e pin, so
the constraint has removed 2 degrees of freedom.Y ou do not c reate contact constraint s; they are
creat ed automatically by Box2D.Box2D supports several joint types revolute, prismatic, distan ce,
an d more. Some joints may have limits and mot ors.For example, the h uman elbow only allows a ¢
ertain range of an gles. For example, you ¢ an use a motor to drive the rotation of an elbow.Box2D
supports the c reation of multiple worlds, but t his is usually not necessary or desirable.The Bo x2D
solver is a high performance iterat ive solver t hat operates in order N time, where N is the number
of const raints.Without intervention t his can lead to tunneling. Box2D contains specialized algor
ithms to deal with tunneling. First, the c olli sion algorithm s can interpolate t he motion of two
bodies to find t he first time of impact T OI. Second, t here is a sub stepping solver th at moves bo
dies to t heir first time of impact and th en resolves the collision. 1.6 Mo dules Box2D is composed of
three modules Common, Colli s ion, and Dynamics. The Common module has ¢ ode for allocat ion,
math, and settings. Fina lly th e Dynamics module pro vides t he simulation world, bodies, fixtures,
and joints. These t olerances have been tuned to work well with meterskil o gramsecond MKS units.

https://formations.fondationmironroyer.com/en/node/8549

In particu lar, Box2D has been tuned to work well with moving shapes bet ween 0.1 and 10 meters.
So t his means object s between so up cans and buses in size sho uld work well. Static shapes may b
e up to 50 met ers long without trouble. Being a 2D physics engine, it is tempting to use pixels as
your units. Unfortunat ely this will lead to a poor simulation and possibly weird behavior. An o bject
o flength 20 0 pixe Is would be seen by Box2D as the size of a 45 story bu il ding. Caution Box2D is

http://skibetjagtforening.damgruppen.dk/userfiles/corvec-britony-ii-t-manual.xml
https://formations.fondationmironroyer.com/en/node/8549

tuned fo r MKS units. Keep th e size of moving objects roughly between 0.1 and 1 0 meters. Yo ull
need to use so me scaling system when you render your environment and actors. T he Box2D t
estbed does this by using an O penGL viewport transform. DO NOT USE PIXELS. It is best to think
of Box2D bodies as moving billboards upon which you att a ch your artwork. The billboard may mo
ve in a unit system of meters, but you can convert that to pixel coo rdinates with a simple scaling fac
tor. You can then use those pixel coordinates t o place yo ur sprites, etc. Y ou ¢ an also acco unt for
flipped coo rdinate axes. Box2D uses radians for angles. The body rotation is stored in radians an d
may grow un bounded. Consider normalizin g the angle of your bo dies if the magnitude of the angle
becomes to o large use b2BodySetAngle. So when you create a h2Body o r a b2Joint, you need to call
the factory functions o n b2World. You should never t ry to allocate these t ypes in anot her manner.
Th ese definitions cont ain all the information needed to b uild the bod y or joint. By using this ap
proach we can prevent const ruction errors, keep the n umber of funct ion parameters small, provide
sensible defau lts, and redu ce the number of accessors. So you can creat e definitions on the stack
and keep them in t emporary resourc es. T his code does not contain any graphics. All you will se e is
text output in t he console of the boxs po sition over t ime.

https://hardwareusato.com/images/casio-ctk-450-keyboard-manual.pdf

This is a good example of how to get up an d running with Box2D. 2.1 Creat ing a Worl d Every Box2
D program begins with the c reation of a b2World objec t. b2World is t he physics hub that manages
memory, object s, and simulation. You can allocate th e physics wor ld on t h e stack, h eap, or data
sec tion. It is easy t o creat e a Box2D world. First, we define t he gravi ty vec tor.Note that we are c
re ating th e world on the stack, so the world must remain in scope.For st ep 1 we creat e the ground
bo dy. For this we need a body definition. With the bo dy definition we specify the initial position of t
he ground body.The world objec t does not keep a reference to the bod y definition. Bodies are static
by default. Static bod ies dont collide with ot her static bodies an d are immovable. So in this case t
he ground box is 100 units wide xaxis and 2 0 units tall yaxis. Box2D is tu ned for meters, kilograms,
and seco nds. So you ¢ an consider the extents to b e in meters. Box2 D generally works best when
objects are the size of typical real world o bjects. Fo r example, a barr el is about 1 meter tall. Due to
the limitations o f floating point arit hmetic, u sing Box2D to model the movement of glaciers or dust
p ar ticles is not a good idea. We finish the ground bod y in step 4 by creating th e shape fixture. For
t his step we h ave a shortcut. We do no t have a need t o alter the d efault fixture material pro
perties, so we can pass the sha pe directly t o the bo dy without creat ing a fixture definition. L ater
we will see how t o use a fixture definition for custo mized material properties. The seco nd
parameter is the shape density in kilograms per meter squared. A stat ic body has zero mass by
definition, so the density is no t used in this case. It c lone s th e data into a new b 2Shape object.
Note t hat every fixture must have a parent body, even fixtures that are static. However, yo u can
attach all static fixtures to a single static b ody.

https://juanguillermocadena.com/images/casio-ctk-491-keyboard-manual.pdf

When you attac h a shape to a body using a fixture, the shape’ s coordinates b ecome local t o the
body. So when th e body moves, so does the shape. A fixture’s w orld tra nsform is inherited fro m
the p arent bo dy. A fixture does not h ave a transform independent of the body. So we don’t move a
shape arou n d on th e body. Moving or modifying a sha pe that is on a body is not supported. The
reason is simpl e a body with morphing shapes is not a rigid body, but Box2D is a rigid body engine.
Many of the assumptions made in Box2D are based on t he rigid body model. If this is viol ated many
t hings will break 2.3 Creat ing a Dyn amic Body So no w we have a grou nd body. We can use the
same tec hni que to create a dynamic body. The main difference, besides dimensions, is that we must
est ablish the dynamic bodys mass p roperties. First we c reate t he body using CreateBody. By
default bodies are st atic, so we sho uld set the b2BodyT ype at const ruction time to make the body
dynamic. First we creat e a box shape b2PolygonShape dynamicBox; dynamicBox.SetAsBox1.0f, 1.0f;

https://hardwareusato.com/images/casio-ctk-450-keyboard-manual.pdf
https://juanguillermocadena.com/images/casio-ctk-491-keyboard-manual.pdf

Next we c reate a fixtu re definition using the box. Notice t hat we set density to 1. Th e d efault
density is zero. Using th e fixture definition we can no w create the fixture. This aut omatically
updates the mass o f the body. Yo u can add as many fixtures as you li ke to a body. Each one
contribut es to the total mass. We are now ready to begin simulating. 2.4 Simulat ing the Wo rld of
Box2D So we have initialized the ground box and a dynamic box. Now we are ready to set Newton
loose to do his thing. We just have a cou ple more issues to consider. Box2D uses a computat ional
algorithm called an int egrator. Integrators simulate t he physics equat ions at disc rete points of
time. This goes along with t he traditional game loop where we essent ially have a flip book of
movement on t he screen. So we n eed to pick a time step fo r Box2D.

You can get away with larger time steps, but you wil 1 have to be more c areful about setting up the
def initions for your world. We also dont like the time st ep to chan ge much. A variable time step
prod uces variable results, which makes it difficult to debug. So dont tie th e time step to your frame
rate un less you really, really have to. Without further ad o, here is the time step. A single ¢ onstra
int can be solved perfect ly. How ever, when we solve one co nstraint, we slightly disrupt ot her co
nstraints. To get a good solut ion, we n eed to iterate o ver all constraint s a number of t imes. There
are two phases in the constraint so lver a velocity phase and a position p hase. In the velocity phase
th e solver comput es the impulses necessary for the bod ies to move correc tly. In the posit ion
phase th e solver adjusts the positions of the bodies to reduce overlap and joint detachment. Eac h
phase has its o wn iteration ¢ ount. In addition, the position phase may exit iterations early if the
erro ts are small. The suggested iteration c ount f or Box2 D is 8 fo r velocity and 3 for position. Y ou
can tune th is number to your liking, just keep in mind that this has a trade of f b etween performanc
e and ac curacy. Using fewer iterations inc reases performance but ac curacy suffers. Likewi s e,
using more it erations decreases performance but improves t he quality of your simulation. For t his
simple example, we dont need much iteration. Here are our chosen iteration ¢ ounts. An iteration is
not a sub step. One solver iterat ion is a single pass over al 1 the ¢ onstraints within a time step. You
can have multiple passes over t he con straints within a single time step. We are no w ready to begin
the simulation loop. In your game th e simulation loop ¢ an be merged with your game loop. In eac h
pass t hrough your game loop you call b2World Step. Just one call is usually enough, depending on
you r frame rate and your physics t ime step.

bascobrunswick.com.au/wp-content/plugins/formcraft/file-
upload/server/content/files/1626fe9f8dcacc---bose-wave-manual.pdf

The Hello World pro gram was des igned to be simple, so it h as no graphical outp ut. The code p
rints out the po sition and rotat ion of the dynamic body. Here is the simulation loop that simulates
60 time steps for a total of 1 secon d of simulated time. Your out put should look like this T his is
done to improve performance a nd make your life easier. However, you will need to nullify any body,
fixture, o r joint pointers you have becau se they wil | become invalid. 2.6 T he Testbed Onc e you
have conqu ered the Hell oWorld exa mple, yo u sho uld start looking at Box2Ds testb ed. The
testbed is a unittest ing framework and demo environment.I encourage you t o explore and tinker
with the t estbed as you learn Bo x2D. Note the testbed is writt en using freeglut and GLUI. The
testbed is not part of th e Box2D library. The Box2D library is agnostic abou t rendering. As shown
by the HelloWorld examp le, you dont need a renderer to use Box2 D. Constant s Allocation
wrappers. The version number Typ es Box2D defines various types suc h as float 32, int8,
etc.Constants Box2D defines several constan ts. These are all documented in b2Sett ings.h. Normally
you do no t need to adjust these constant s. Box2D uses floating point math fo r co 1li sion and simul
a tion. Due t o round off erro r some n umerical tolerances are defined. Some toleranc es are
absolute and some are relative. Absolute t olerances use MKS unit s. Allocation wr appers The set
tings file defines b2Alloc and b2 Free for large allocat ions. You may fo rward these calls to your own
memory manage ment system. Versi on The b2 Version structure holds the curren t version so you

http://dag.ru/bascobrunswick.com.au/wp-content/plugins/formcraft/file-upload/server/content/files/1626fe9f8dcacc---bose-wave-manual.pdf
http://dag.ru/bascobrunswick.com.au/wp-content/plugins/formcraft/file-upload/server/content/files/1626fe9f8dcacc---bose-wave-manual.pdf

can query this at run time. 3.3 Me mory Man agement A large number of the dec isi ons ab out t he
desig n of Box2D were based on the need for g uick and efficient use o f memory. In this sect ion I
will discuss how and why Box2D allocates memory.

Using the syst em heap through mall oc or new fo r small objects is inefficient and ¢ an cause
fragmentat ion. Many of these small object s may have a short life span, such as c ontacts, but ¢ an
persist for several t ime steps. So we n eed an allocat or that c an efficiently provide heap memory
for t hese objects. Box2Ds solution is t o0 use a small object allocator S OA called b2 BlockAll ocat or.
The SOA keeps a number of growable pools of varying sizes. When a requ est is made for memory, t
he SOA ret urns a block of memory t hat best fits the request ed size. When a b 1 ock is freed, it is
retu rned to the pool. Bot h of these o perations are fast and cause little heap traffic. Since Box2 D
uses a SOA, you should never new or malloc a body, fixture, or joint. Howev er, you do have to all
ocat e a b2 World on you r own. The b2World class provides factories for you to ¢ reate bodies,
fixtures, an d joints. T his allows Box2D t o us e th e SOA a nd hide t he gory det ails from you.
Never, c all delete or free on a body, fixture, o r joint. While execut ing a time step, Box2D needs
some temporary workspace memory. For this, it uses a st a ck allocator called b2Stac kAll ocat or to
avoid p er step h ea p allocations. Y ou do nt need to interac t with the stack allocator, but its good to
know its there. 3.4 Mat h Box2D includes a simple small vect or and matrix module. This has b een
designed to suit the internal needs of Box2D an d th e API. All the memb ers are exposed, so you may
u se them freely in your application. The mat h library is kept simple to make Box2D easy to port and
maintain. T he module also ¢ ontains a dynamic tree and broadph ase to acceleration co lli sion pro
cessing of large systems. The c ollisi on modu le is designed to be usable o utside of t he dynamic
syst em. For example, you can u se the dynamic tree for other aspect s of your game besides physics.

However, the main purpose of Box2D is to provide a rigid body physics engine, so th e using the c
ollisi on module by itself may fe el limited fo r some applications. Likewise, I will not make a st rong
effort to document it or polish th e APIs. 4.2 Shapes Shapes desc ribe collisi on geo metry an d may
be used independently of physics simulation. At a minimum, you should un derstand ho w to create
shapes that can be later a ttac hed to rigi d bod ies. Box2D shapes implement the b2Shape base
class. In addition, each sha pe has a type member and a radius. The radius even applies to po lygons,
as discussed below. Keep in mind t hat a shape does not know about bodies and st and apart fro m
the dynamics system. Shapes are stored in a compact form t hat is optimized for size and
performanc e. As such, shapes are not easily moved aro und. You have to manually set the sh ape
vertex positions t o move a shape. However, when a sha pe is attac hed to a body using a fixture, the
shapes move rigid ly with the ho st bod y. In summary When a shape is not attac hed to a b ody, you
can view it’s vertices as being expressed in world space. When a shape is att ached to a body, you
can view it’s vertices as being expressed in loc al coord inates. Circles are so lid. You cannot make a
ho 1l ow c ircle using the circle shape. Polygon s are solid and never hollow. A polygon must have 3
or more vertices. Polygons vertices are st ored with a counter cloc kwise windi ng CCW. We must be
careful bec ause the notion of CCW is with respect to a righthanded c oordinate system with the
zaxis pointing ou t of the plane. This might turn out to be cloc kwise on your screen, depending o n
your coordinat e system convent ions. The po lygon members are public, but yo u should use i
nitialization fu nctions t o create a polygon. The initialization fun ctions c reate no rmal v ectors and
perform val idation. You can create a polygon shap e by passing in a vertex array.

The b2 PolygonShapeSet function auto matically computes the convex hull and establishes the p
roper winding order. This func tion is fast when t he number of vertices is low. If you increase The
skin is u sed in stacking sc enarios to keep polygons slightly separated. This allows co ntinuous c
ollisi on t o work against the ¢ ore polygon. The po lygon skin helps prevent t unneling by keep ing
the polygons separat ed. This results in small gaps between t he shapes. Yo ur visual representat ion
can be larger than the po lygon to hide any gaps. These are provided t o assist in making a free form

stat ic environment for your game. A major limitation of edge shapes is t hat t hey can co 1l ide with ¢
ircles and polygons b ut not with themselves. The co lli sion algorit hms used by Bo x2D require t hat
at least one of two colliding shapes have volume.This can giv e rise to an unexpec ted art ifact when
a polygon slides along the ¢ hain of edges. In t he figure below we see a box co 1l iding with an
internal vert ex. These g host collisi ons are caused when the polygon collides with an internal vertex
generating an internal collision norma l. If edgel did no t exist t his collision would seem fine. With
edgel present, the internal c olli sion seems 1 ike a bug. But normally when Box2D collides two
shapes, it vi ews them in isolation. Fortun ately, the edge shape pro vides a mechanism for
eliminating ghost c ollisio ns by st oring the adjacent ghost vertices. Box2D uses these ghost vertices
to prevent internal co lli sions. Chain Shap es The c hain shape p rovides an efficient way to connect
many edges to gether to const r uct your static game worlds. You can connec t chains to gether
using ghost vertices, like we did with b2 EdgeShape. It mig ht work, it mig ht not. T he code that
prevent s ghost c ollisi ons assumes t here are no selfi ntersect ions of th e chain. Each edge in the
chain is treated as a child shape and c an be accessed by index.

Shape Po int Test You can test a point for overlap with a sha pe. You provide a t ransform for the
shape and a world point. No hit wil | register if the ray starts inside the shape. A child index is inc
luded for ¢ hain shapes bec ause t he ray cast will only check a single edge at a time.If we consider
circle circle or circlepolygon, we can on ly get one ¢ ontact point an d normal. In the ¢ ase of po lyg
onpolyg on we can get two p oints. These p oints share the same n ormal vect or so Box2D groups t
hem into a manifold stru cture. The c ontact solver takes ad vantage of t his to improve stacking st
abili ty. Normally you d on’t need to compute contact manifolds direct ly, however you wil I like ly
use the result s produc ed in the simulation. The b2 Manifold stru cture holds a normal vecto r and
up t o two contact points. The normal and points are held in loc al coordinat es. As a convenience for
th e contact solver, each point st ores the normal and tangential friction impulses. The dat a stored
in b2 Manifold is opt imi zed for internal use. If you need this dat a, it is usually best to use the b2
WorldManifold struc ture to generat e the world coordinates o f the contact no rmal and point s. You
need to provide a b 2Manifold and the shape transforms a nd radii. During simulat ion shapes may
move an d the manifolds may ¢ hange. Points may be ad ded or removed. You can detect th is using
b2GetPointSt ates. Th ere is also some ¢ aching used t o warm start the d istance function for
repeated calls. You c an see the details in b2 Distance.h. Time of Impact If two sha pes are moving
fast, they may tunnel through eac h other in a singl e time step. The b2 TimeOfImpact function is
used to determine the time when two moving shapes collide. This is called the t ime of impact TO I.
Th e main purpose of b2TimeOfImpact is fo r tunn el prevention. In particular, it is designed to
prevent mo ving objec ts from tunn eli ng out side of stat ic level geometry.

This func tion accounts fo r rotation and translation of b oth shapes, however if the ro tations are
large enough, then the function may miss a collision. However t he function will still report a nono
verlapped time and will capture all translational collisions. The t ime of impact function identities an
initial separat ing axis and ensures the shapes do not cross on that axis. This might miss collisions th
at are clear at the final posit ions. While t his approach may miss some co 1l isions, it is very fast and
adequat e for tunnel prevention. There may be cases where c ollisi ons are missed for small ro
tations. Normally, these missed rot ational co lli sions should not harm game play. They tend to be
glancing collisions. The fu nction requires two shapes co nverted to b2DistanceProxy and t wo
b2Sweep structures. Th e sweep struc ture defines t he initial and final transforms of the shapes.
You can use fixed rot ations to perform a sha pe cast. In this c ase, the t ime of impact funct ion wi 1l
not miss any collisions. 4.5 Dyn amic Tree The b2 DynamicTree c lass is used by Bo x2D to organize
large numbers of shapes efficie ntly. T he class does not know about shapes. Instead it operat es on
axi saligned bou nding boxes A ABBs wi th u ser data pointers. The dynamic tree is a h ierarchical
AABB tree. Eac h internal no de in the tree has two children. A leaf node is a singl e user AA BB. The
tree uses rotat ions to keep the tree balanced, even in the c ase of degenerate input. The t ree

structure allows for efficient ray casts and region qu eries. For example, you may have hu ndreds of
shapes in your sc ene. You could p erform a ray cast agai nst the sc ene in a b rute force manner by
ray casting eac h shape. Th is would be inefficient b ecause it d oes not take advantage of shapes
being spread This traverses t he ray thro ugh the tree skipping large numbers of shap es. A region
query uses the tree to find all leaf AA BBs t hat overlap a query AABB.

T his is faster t han a b ru te force approach becau se many shapes ¢ an be skipped. Normally you
wil] not u se the dynamic tree directly. Rather you will go t hrough t he b2World c lass for ray casts
and region queries. If you plan t o instant iate your own dynamic t ree, you can learn how to use it by
looking at how Box2D uses it. 4.6 Broadphase Collision processing in a ph ysics step ¢ an be div ided
into n arrowphase and broadphase. In the narr ow phase we ¢ ompute ¢ ontact points be tween pairs
of sh apes. Imagine we have N sha pes.T his great ly reduces t he number of narrowphase calls.
Normally you d o not interact with the broadphase directly. Instead, Box2D creates and manages a
broadphase internally. Also, b2Bro adPhase is designed with Box2D’s simulation loop in mind, so it is
likely not suited for other use cases. Th e Dynamics module sits on to p of the Common and Colli sion
modules, so you shou ld be somewhat familiar with those b y now. The D ynamics module con
tains.In t he following, you may see some references t o classes t hat h ave not been described yet. T
herefore, you may want to quickly skim this ch apter before reading it closely. The dynamics module
is covered in t he following chapt ers. Y ou can apply forc e s, t orques, and impulses to bodies.
Bodies c an be static, kinematic, or dynamic. Internall y, Box2 D stores z ero for the mass and the
inverse mass. Stat ic bodies ¢ an be moved manually by the user. A st atic body has zero velocity. St
atic bodies do n ot collide with oth e r static or kinematic bodies. Kinemat ic bodies do not respond
to forces. T hey can be moved manually by th e user, but normal ly a kinematic body is moved by sett
ing its velocity. A kinematic body behaves as if it has infinite mass, however, Box2 D sto res zero for
the mass and t he inverse mass. Kinematic bodies do not collide with ot her ki nematic or static
bodies. They ¢ an be moved m anually b y the user, but normally they move acco rding to fo r ces.

http://www.drupalitalia.org/node/79953

http://www.drupalitalia.org/node/79953

